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1. Introduction

With ref. [1], Gauntlett et al. revolutionized the art of finding supersymmetric solutions,

by extending the methods pioneered by Tod [2] and applying them to classify the super-

symmetric solutions of minimal N = 1 d = 5 supergravity. Since then, there has been

a renewed, vigorous and systematic effort in the literature to classify, or at least char-

acterize, generic supersymmetric solutions of supergravity theories. In the framework of
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N = 1, d = 5 SUGRA the results of ref. [1] were extended to the gauged case in ref. [3], to

include the coupling to an arbitrary number of vector multiplets in ref. [4] and their Abelian

gaugings were further considered in refs. [5, 6].1 In the framework of N = 2, d = 4 SUGRA

the new methods allowed the extension of Tod’s results to pure gauged N = 2, d = 4

SUGRA [9] and to ungauged N = 2, d = 4 SUGRA coupled to an arbitrary number of

vector multiplets [10] and hypermultiplets [11]. The minimal d = 6 SUGRA was dealt

with in refs. [12, 13], some gaugings were considered in ref. [14] and the coupling to hy-

permultiplets has been fully solved in ref. [15]. Further works in other (higher) dimensions

and number of supercharges or based on the alternative methods of spinorial geometry are

refs. [16, 17].

In this paper we will extend further the results obtained in ungauged N = 1, d =

5 SUGRA to include, on top of vector multiplets, hypermultiplets. This problem was

considered before by Cacciatori, Celi and Zanon in refs. [18 – 20], making progress towards

a full solution of the problem which we present here.

Similar works in 4- and 6-dimensional SUGRAs with 8 supercharges (N = 2, d = 4

and N = (1, 0), d = 6) coupled to vector multiplets and hypermultiplets have been recently

published [11, 15]. As the observant reader will see, there is a staggering similarity between

the results found in those works and the ones presented here. The reason for this is simply

because the hypermultiplets have a very characteristic, and minimal, way of coupling to the

rest of the fields, a coupling that is roughly the same in the 3 theories with 8 supercharges,

wherefore the resulting structures should be comparable.

Let us describe our results qualitatively: all the supersymmetric solutions can be seen

as deformations of supersymmetric solutions with the same electric and magnetic charges

but frozen hyperscalars (which is effectively the same as having only vector multiplets),

which were classified in ref. [3]. The effect of defrosting the hyperscalars is an electric

and magnetic charge preserving deformation of those solutions; the deformations consist

in a deformation of the base space in the timelike case and of the wavefront space in the

null case. To be more precise, in the timelike case, the metrics of all the supersymmetric

solutions have the general conformastationary form

ds2 = f2 (dt + ω)2 − f−1hmndxmdxn . (1.1)

hmn is the time-independent base space metric and when dealing with frozen hypermulti-

plets, it has to be hyper-Kähler. The metric, with f = 1 and ω = 0 and vanishing matter

fields is a supersymmetric solution by itself and can be seen as a background which is

excited when electric and magnetic charges are turned on. The functions f and ω are es-

sentially determined by the electric and magnetic charges and satisfy covariant differential

equations in the base space.

When the hyperscalars are turned on hmn is no longer a hyper-Kähler manifold: the

form of this metric is dictated by two requirements

1Previous work on these theories can be found in refs. [7, 8].
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1. The hyperscalars qX(x) are quaternionic maps2 from the base space to the

quaternionic-Kähler target manifold.

2. The anti-selfdual part of the spin connection of the base manifold has to be equal

(up to gauge transformations) to the pullback of the su(2) connection characterizing

the quaternionic-Kähler target manifold.

These two conditions are interwoven but, as we will show in an explicit example, can be

solved simultaneously.

Now, the metric, with f = 1 and ω = 0, vanishing vector multiplets but unfrozen

hyperscalars is a supersymmetric solution by itself and can be seen as a background which

is excited when electric and magnetic charges are turned on. The functions f and ω satisfy

the same covariant differential equations as before but in the new base space metric.

These solutions generically preserve only 1/8 of the available 8 supersymmetries.

In the null case, the metric is generically of the form

ds2 = 2fdu(dv + Hdu + ω) − f−2γrsdxrdxs , (1.2)

where r, s = 1, 2, 3 and all functions are v-independent. The functions f and H and the

1-form ω depend on the electric and magnetic charges and satisfy differential equations

in the background of the 3-dimensional wavefront metric γrs. When the hyperscalars are

frozen, this metric is flat; when they are turned on, the 3-dimensional metric is determined

by exactly the same two conditions that the base space of supersymmetric solutions of

N = 2, d = 4 SUGRA coupled to hypermultiplets satisfy, namely

1. The hyperscalars must satisfy

∂rq
X fX

iA σr
i
j = 0 . (1.3)

2. The spin connection of the 3-dimensional metric must be equal (up to gauge trans-

formations) to the pull-back of the the su(2) connection that characterizes the

quaternionic-Kähler target manifold.

This suggests a relation with the 4-dimensional solutions. We thus consider the particu-

lar case in which the metric has an additional isometry and is, in particular, u-independent.

It is not difficult to see that in general the solutions of the null case describe pp-waves prop-

agating along a string. Solutions which are u-independent can be compactified along the

direction in which the wave propagates, i.e. along the string and give solutions belonging

to the 4-dimensional timelike class, i.e. black hole-type solutions.

This set of 5-dimensional solutions and their reductions are presented here for the

first time and allow an uplifting of 4-dimensional black-hole-type solutions (with or with-

out hypermultiplets) to d = 5 dimensions different from the one considered in refs. [21 –

27]. There, 4-dimensional black holes were uplifted to 4-dimensional black holes in a KK

monopole background. Here we are dealing with the electric-magnetic dual uplift since the

2Please see the discussion after eq. (4.30) for more information about the notion of quaternionic maps.
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simplest 5-dimensional pp-wave and the Sorkin-Gross-Perry KK monopole [28] are related

by dimensional reduction to d = 4 dimensions and 4-dimensional electric-magnetic duality,

the 4-dimensional solution being the so-called “KK black hole”, which in this simple case

is singular. This relation is known in the general case under the name of “r-map”, whence

the r-map will relate these new string-pp-wave upliftings3 to the known black hole-KK

monopole upliftings.

This uplift may be more convenient to understand the black hole solutions from a

higher-dimensional point of view since they are direct realizations of the D1-D5-W model.

It may shed light on Mathur’s conjecture [30, 31] on the realization of D1-D5-W microstates

as supergravity solutions [32].

For the sake of completeness we have also worked out the timelike case with one addi-

tional isometry as, with frozen hyperscalars, all of the interesting solutions (supersymmetric

rotating black holes and black rings [33]) seem to belong to this class [1, 34, 4]. The base

space manifold is now a generalization of the Gibbons-Hawking instanton metric [35]. The

Gibbons-Hawking instanton metric is the most general 4-dimensional hyper-Kähler metric

with one isometry and can be used as a base space metric hmn in absence of hyperscalars.

It has the form

ds2
(4) = H−1(dz + χ)2 + Hδrsdxrdxs , r, s = 1, 2, 3 , (1.4)

where H is a function harmonic on 3-dimensional Euclidean space.

In presence of unfrozen hyperscalars the metric to be considered is

ds2
(4) = H−1(dz + χ)2 + Hγrsdxrdxs , r, s = 1, 2, 3 , (1.5)

where the spin connection of the 3-dimensional metric γrs has to be equal (up to gauge

transformations) to the pullback of the su(2) connection of the hyperscalar manifold.

This paper is organized as follows: in section 2 we describe ungauged N = 1, d = 5

supergravity coupled to vector multiplets and hypermultiplets. In section 3 we derive

the integrability conditions (KSIs) of the Killing spinor equations (KSEs), that relate the

equations of motion of the fields for supersymmetric configurations, which will allow us

to minimize the number of independent equations that need to be solved. In section 4

we proceed to find the supersymmetric configurations and solutions, both in the timelike,

(section 4.1,) and in the null (section 4.3) classes. An explicit example of the timelike class

with unfrozen hyperscalars is given in section 4.2 and the general subclasses of solutions

that generically have one additional isometry are given in sections 4.2.1 (timelike case) and

section 4.3.3 (null case). Section 5 contains our conclusions and final thoughts. Appendix A

contains our conventions on gamma matrices, spinors, spinor bilinears and real special

geometry. Appendix B contains a brief introduction to quaternionic-Kähler manifolds.

Finally, appendices C and D contain the necessary geometric data for the 5-dimensional

metrics that appear in this paper.

3A particular case of this kind of uplifting was also observed in ref. [29], although the 5-dimensional

solutions were interpreted as rotating strings.

– 4 –



J
H
E
P
0
1
(
2
0
0
7
)
0
2
0

2. Matter-coupled, ungauged N = 1, d = 5 supergravity

In this section we describe briefly the supergravity theories we will be working with:

N = 1, d = 5 (minimal) ungauged supergravity coupled to nv vector multiplets and nh

hypermultiplets.4

The supergravity multiplet consists of the graviton ea
µ, the graviphoton Aµ and the

gravitino ψi
µ. The gravitino and the rest of spinors in the theory are pairs of symplectic-

Majorana spinors i = 1, 2 as explained in appendix A.1.

Each of the nv vector multiplets, labeled by x = 1, · · · , nv consists of one real vector

field Ax
µ, a real scalar φx and a gaugino λxi. The scalars φx, parametrize a Riemannian

manifold which we call ”the scalar manifold”. The full theory is formally invariant under

an SO(nv + 1) symmetry that mixes the matter vectors Ax
µ with the supergravity vector

Aµ ≡ A0
µ and so it is convenient to treat all the vector fields on the same footing denoting

them by AI
µ I = 0, · · · , nv. The symmetry that rotates the vectors acts on the scalars as

well and, to make it manifest one defines nv + 1 functions of the physical scalars hI(φ).

These functions satisfy the constraint

CIJKhIhJhK = 1 , (2.1)

where CIJK is a fully symmetric real constant tensor which characterizes completely the

couplings in the vectorial sector. In particular it determines the metric of the scalar mani-

fold gxy(φ) on the target of φx, the couplings between scalars and vector fields aIJ(φ) and

the coupling constants of the vector field Chern-Simons terms. The relations between these

fields are given in the appendix A.3.

Each of the nh hypermultiplets consists of four real scalar-fields (hyperscalars) qX ,

X = 1, · · · , 4nh and two spinor fields (hyperinos) ζA, A = 1, . . . , 2nh. The index i associated

to the symplectic-Majorana condition is embedded into the index A. The hyperscalars qX

parametrize a quaternionic-Kähler manifold, described in appendix B, that we will refer to

as the hypervariety. In particular we observe that the connection of quaternionic-Kähler

manifolds can be decomposed in an sp(1) ' su(2) and an sp(nh) component whose pullback

to spacetime will act on objects with index i and A, respectively.

The bosonic part of the action is

S =

∫

d5x
√

g

{

R + 1
2gxy∂µφx∂µφy + 1

2gXY ∂µqX∂µqY

−1
4aIJF I µνF J

µν + 1
12

√
3
CIJK

εµνρσα

√
g

F I
µνF J

ρσAK
α

}

.
(2.2)

Observe that the hyperscalars do not couple to any of the fields in the vector multiplets

and couple to the supergravity multiplet only through the metric. This is similar to what

happens in N = 2, d = 4 theories and will have similar consequences.

4We follow essentially the notation and conventions of ref. [37] with some minor changes to adapt them

to those in refs. [38, 39]. The changes are explained in appendix A. The original references on matter-

coupled N = 1, d = 5 SUGRA are [40] and [41]. The origin of these theories from compactifications of

11-dimensional supergravity on Calabi-Yau 3-folds was studied in ref. [42].
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We use the following notation for the equations of motion

Ea
µ ≡ − 1

2
√

g

δS

δea
µ

, Ex ≡ − 1√
g

δS

δφx
, EX ≡ − 1√

g

δS

δqX
, EI

µ ≡ 1√
g

δS

δAI
µ

, (2.3)

which are given by

Eµν = Gµν − 1
2aIJ

(

F I
µ

ρF J
νρ − 1

4gµνF I ρσF J
ρσ

)

+ 1
2gxy

(

∂µφx∂νφy − 1
2gµν∂ρφ

x∂ρφy
)

+1
2gXY

(

∂µqX∂νq
Y − 1

2gµν∂ρq
X∂ρqY

)

, (2.4)

gxyEy = Dµ∂µφx + 1
4gxy∂yaIJF I ρσF J

ρσ , (2.5)

gXY EY = Dµ∂µqX , (2.6)

EI
µ = ∇ν(aIJF J νµ) + 1

4
√

3
CIJK

εµνρσα

√
g

F J
νρF

J
σα . (2.7)

To these definitions we add the following notation for the Bianchi identities of the

vector fields:

BI
µνρ ≡ 3∇[µF I

νρ] . (2.8)

In these equations Dµ is the covariant derivative in the spacetime and in the corre-

sponding scalar manifold. Then, eq. (2.6) states that q is a harmonic map from spacetime

to the hypervariety.

The supersymmetry transformation rules for the fermionic fields, evaluated on vanish-

ing fermions, are

δεψ
i
µ = Dµεi − 1

8
√

3
hIF

I αβ (γµαβ − 4gµαγβ) εi , (2.9)

δελ
ix = 1

2

(

6∂φx − 1
2hx

I 6F I
)

εi , (2.10)

δεζ
A = 1

2fX
iA 6∂qXεi , (2.11)

where Dµ is the Lorentz- and SU(2)-covariant derivative

Dµεi ≡ ∇µεi + εj
Aj

i
µ , (2.12)

and the su(2) connection is the pullback of the su(2) connection of the hypervariety:

A
r
µ ≡ ∂µqX ωX

r , Aj
i = iAr σr

j
i . (2.13)

Observe that the hyperscalars only appear in the gravitino’s and gauginos’ supersymmetry

transformation rules precisely through the su(2) connection.

Finally, the supersymmetry transformation rules of the bosonic fields are

δεe
a
µ = i

2 ε̄iγ
aψi

µ , (2.14)

δεA
I
µ = − i

√
3

2 hI ε̄iψ
i
µ + i

2hI
xε̄iγµλx i , (2.15)

δεφ
x = i

2 ε̄iλ
x i , (2.16)

δεq
X = −ifiA

X ε̄iζA . (2.17)
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3. KSIs and integrability conditions

The bosons’ supersymmetry transformation rules lead to the following KSIs [43, 44] asso-

ciated to the gravitino, gauginos and hyperinos resp.:
(

Eµ
νγν +

√
3

2 hIEI µ

)

εi = 0 , (3.1)
(

Ex − hI
x 6 EI

)

εi = 0 , (3.2)

fiA
XEXεi = 0 . (3.3)

It is an implicit assumption, used to derive the KSIs, that the Bianchi identities are satisfied.

This affects, in particular, the first two KSIs, where the vector field equations appears. It

is, therefore, useful to derive them from the integrability conditions of the KSEs, even if

the derivation requires much more work, because in this case, contrary to what happens

in N = 2, d = 4 theories [10], there is no electric-magnetic symmetry indicating in what

combination the Bianchi identities should accompany the Maxwell equations.

The integrability condition of the KSE associated to the gravitino supersymmetry

transformation gives

4γν
D[µδεψ

i
ν] =

{(

Eµ
σ − 1

3gµ
σ Eρ

ρ
)

γσ

+ 1
4
√

3
hI

[

γµ

(

6 EI + 1
6aIJ 6 BJ

)

+ 3
(

6 EI + 1
6aIJ 6 BJ

)

γµ

]

}

εi = 0 .
(3.4)

To obtain this equation we need to use eqs. (B.11)–(B.13), with ν = −1 as to ensure

the correct normalization of the hyperscalars’ energy-momentum tensor. It is a well-known

result that manifolds with the opposite sign of ν cannot be coupled to supergravity and

here we are just recovering this result.

Acting with γµ from the left, we get
[

Eρ
ρ +

√
3

2 hI(6 EI − 1
3aIJ 6 BJ)

]

εi = 0 , (3.5)

which can be used to eliminate Eρ
ρ from the integrability equation:

[(

Eµ
σ +

√
3

2 hI
?BI

µ
σ
)

γσ +
√

3
2 hIEI µ

]

εi = 0 . (3.6)

On the other hand, from the gauginos’ supersymmetry transformation rule we get

2 6Dδελ
ix =

[

Ex − hI
x

(

6 EI + 1
6aIJ 6 BJ

)]

εi = 0 . (3.7)

Eqs. (3.6) and (3.7) are the modifications to the two KSIs eq. (3.1) and eq. (3.2) that we

were seeking for.

Let us now obtain tensorial equations form the spinorial KSIs: acting with iε̄iγρ from

the left on eq. (3.6) and taking into account the properties of the spinor bilinears discussed

in appendix A.2, we get

f
(

Eµρ +
√

3
2 hI

?BI
µρ

)

+
√

3
2 hIEI µVρ = 0 , (3.8)

whose symmetric and antisymmetric parts give independent equations.

– 7 –
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Doing the same on eqs. (3.7) and (3.3), we get

ExV
ρ − fhI

xEI
ρ = 0 , (3.9)

EXV ρ = 0 . (3.10)

Finally, acting with iε̄i on eqs. (3.6), (3.7) and (3.3) from the left we get respectively
(

Eµρ +
√

3
2 hI

?BI
µρ

)

V ρ +
√

3
2 fhIEI µ = 0 , (3.11)

fEx − hI
xEI ρV

ρ = 0 , (3.12)

EXf = 0 . (3.13)

which can be obtained from eqs. (3.8)–(3.10) only in the timelike f 6= 0 case.

Summarizing, in the timelike case, defining the unimodular timelike vector vµ ≡ V µ/f ,

we have

Eµν = −
√

3
2 hIEI

(µvν) , (3.14)

hI
?BI µν = −hIEI

[µvν] , (3.15)

Ex = hI
xEIρv

ρ , (3.16)

EX = 0 , (3.17)

which imply that all the supersymmetric configurations automatically solve the equation

of motion of the hyperscalars and that, if the Maxwell equations are satisfied, then the

Einstein and scalar equations and the projections hIBI of the Bianchi identities are also

satisfied. Therefore, in the timelike case, the necessary and sufficient condition for a su-

persymmetric configuration to also be a solution of the theory, is that it must solve the

Maxwell equations and the Bianchi identities. Observe that, contrary to the 4-dimensional

cases in which only one component of the Maxwell equations and Bianchi identities (the

time component) need to be checked because the rest are automatically satisfied, in this

5-dimensional case we need to check all the components of the Maxwell equations and of

the Bianchi identities.

In the null (f = 0) case, we get, renaming V µ as lµ

Eµρl
ρ = −

√
3

2 hI
?BI

µρl
ρ , (3.18)

hIEI µ = 0 , (3.19)

hI
xEI ρl

ρ = 0 , (3.20)

Ex = 0 , (3.21)

EX = 0 , (3.22)

which imply that the scalar and hyperscalars equations are automatically satisfied and so

are certain projections of the Maxwell and Einstein equations.

4. Supersymmetric configurations and solutions

In this section we will follow the procedure of ref. [1] to obtain supersymmetric configu-

rations of supergravity, which consists in deriving equations for all the bilinears that can

– 8 –
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be constructed from the Killing spinors. These equations contain the lion’s part of the

information contained in the KSEs and can be used to constrain the form of the bosonic

fields. These constraints are necessary conditions for the configurations to be supersym-

metric and subsequently one has to prove that they are also sufficient (or find the missing

conditions, as will happen in the null case). Finally one has to impose the equations of

motion on the supersymmetric configurations in order to have classical supersymmetric

solutions. The KSIs, derived in the previous section, simplify this task since only a small

number of equations of motion are independent for supersymmetric configurations.

As we remarked in section 2, the hyperscalars appear only implicitly in the gravitino

and gauginos supersymmetry transformations through the pullback of the su(2) connection.

The equations we are going to obtain for the fields in the supergravity and vector multiplets

are, therefore, formally identical to the case without hypermultiplets considered in ref. [5],

but containing implicitly the su(2) connection and its consequences. This is similar to

what happens in the coupling of N = 2, d = 4 theories to hypermultiplets considered only

recently in ref. [11]

Our goal is to find all the field configurations for which the KSEs

{

Dµ − 1
8
√

3
hIF

I αβ (γµαβ − 4gµαγβ)
}

εi = 0 , (4.1)
(

6∂φx − 1
2hx

I 6F I
)

εi = 0 , (4.2)

fX
iA 6∂qXεi = 0 , (4.3)

admit at least one solution εi. We are going to assume its existence and we are going to

derive necessary conditions for this to happen. These conditions will arise as consistency

conditions of the equations satisfied by the tensors that can be constructed as bilinears of

the Killing spinor whose existence was assumed from the onset.

As explained in appendix (A.2), the tensor-bilinears that can be constructed from a

symplectic-Majorana spinor are a scalar f , a vector V and three 2-forms Φr. f and V are

SU(2)-singlets whereas the Φs form an SU(2)-triplet.

The fact that the Killing spinor satisfies eq. (4.1) leads to the following differential

equations for the bilinears:

df = 1√
3
hI iV F I , (4.4)

∇(µVν) = 0 , (4.5)

dV = − 2√
3
fhIF

I − 1√
3
hI

?
(

F I ∧ V
)

, (4.6)

DαΦr
βγ = − 1√

3
hIF

I ρσ
(

gρ[β
?Φr

γ]ασ − gρα
?Φr

βγσ − 1
2gα[β

?Φr
γ]ρσ

)

, (4.7)

where

DαΦr
βγ = ∇αΦr

βγ + 2εrst
A

s
αΦt

βγ . (4.8)

These equations are formally identical to those obtained in ref. [5] but now the covariant

derivative that acts on the triplet of 2-forms is an SU(2)-covariant derivative.

– 9 –
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Eqs. (4.2) and (4.3) lead to algebraic equations for the tensor bilinears: contracting

eq. (4.2) with iε̄i and σr
i
j ε̄j we get

£V φx = 0 , (4.9)

hx
I F I

αβΦr αβ = 0 , (4.10)

and the contraction of eq. (4.3) with iε̄k yields

£V qX = 0 . (4.11)

Contracting now eq. (4.2) with iε̄iγ
µ and σr

i
j ε̄jγ

µ we get

fdφx = −hx
I iV F I , (4.12)

0 = Φr
µν∂

νφx + 1
4εµναβγhx

I F I ναΦr βγ , (4.13)

and, finally, operating on eq. (4.3) with ε̄kγ
µ

f∂µqX + Φr
µ

ν∂νq
Y Jr

Y
X = 0 , (4.14)

where we have identified the complex structures of the target quaternionic-Kähler manifold,

Jr
Y

X = fY
iAJr

iA
jBfjB

X . (4.15)

Eq. (4.5) says that V is an isometry of the space-time metric. The differential equation

of Φr (4.7) implies

dΦr + 2εrst
A

s ∧ Φt = 0 , (4.16)

i.e. the three 2-forms are covariantly closed respect to the induced su(2) connection.

In order to make further progress, it is necessary to separate the timelike (f 6= 0) and

null (f = 0) cases.

4.1 The timelike case

4.1.1 The equations for the bilinears

In this case the Killing vector V is a timelike, V 2 = f2 > 0. We introduce an adapted time

coordinate t: V = ∂t. With this choice of coordinates the metric can be decomposed in

the following way

ds2 = f2 (dt + ω)2 − f−1hmndxmdxn , (4.17)

where ω is a time-independent 1-form and hmn is a time-independent Riemannian four-

dimensional metric.5 Eqs. (4.4), (4.9) and (4.11) imply that with our choice of coordinates

the scalars f , φx and qX are time-independent.

Following ref. [1] we define the following decomposition

fdω = G+ + G− , (4.18)

5Appendix C contains a Vielbein basis and the non-vanishing components of the connection and Ricci

tensor in that basis.
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where G+ and G− are the selfdual and anti-selfdual parts respect to the metric h.

The Fierz identity eq. (A.23) indicates that the Φrs have no time components and the

Fierz identity eq. (A.24) implies that they are anti-selfdual respect to the spatial metric h.

Moreover, the identity eq. (A.25) becomes

Φr
m

nΦs
n

p = −δrsδm
p + εrstΦt

m
p , (4.19)

where all operations on the spatial indices refers to the spatial metric h. This is the algebra

of the imaginary unit quaternions, whence we may conclude that the spatial manifold is

endowed with an almost quaternionic structure.

The next step is to obtain the form of the supersymmetric vector fields from

eqs. (4.4), (4.6), (4.10) and (4.12): these equations contain no explicit contributions from

the hyperscalars and, therefore lead to the same form of the vector fields found in ref. [5],

namely

F I = −
√

3{d
[

fhI (dt + ω)
]

+ ΘI} , (4.20)

where the ΘIs are spatial selfdual 2-forms and

G+ = −3
2hIΘ

I . (4.21)

From (4.7) information about the derivatives of the two-forms Φr can be extracted

using the above expression for F I : first, by introducing the spin connection of the metric

given in appendix C we may obtain the spatial components of the five-dimensional covariant

derivative,

∇(5)
m Φr

nq = f3/2∇mΦnq − 2
3

(

δm[n∂p]f
3/2Φr

pq − δm[q∂p]f
3/2Φr

pn − ∂mf3/2Φr
nq

)

, (4.22)

where ∇m is the covariant derivative of the four-dimensional spatial metric. On the right

hand side of this expression all of the flat indices refers to the Vielbein vm
i. On the other

hand, the spatial components of the equation (4.7) are

∇(5)
m Φr

nq + 2f3/2εrst
A

s
mΦt

nq = − 1√
3
fhIF

I p0
(

δp[nΦr
q]m − δpmΦr

nq − δm[nΦr
q]p

)

(4.23)

where we have used the fact that Φr are spatial, anti-selfdual 2-forms. Now from eq. (4.20)

we read

hIF
I p0 =

√
3f−1/2∂pf (4.24)

and by comparing eqs. (4.22) and (4.23) we find that the 2-forms Φr are SU(2)- and

Lorentz-covariantly constant over the 4-dimensional spatial manifold:

∇mΦr
np + 2εrst

A
s
mΦt

np = ∂mΦr
np − 2ξm[n|

qΦr
q|p] + 2εrst

A
s
mΦt

np = 0 , (4.25)

Here ξ is the standard spin connection of the 4-dimensional spatial manifold.

Had the base space not been 4-dimensional, the conclusion would have been that we are

dealing with a quaternionic-Kähler manifold. But in four dimensions the above equation,

taken at face value, is rather void: given a Vierbein we can construct a kosher quaternionic
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structure by inducing the one from R
4 and then the unique A solving eq. (4.25), is given

by

A
r
m = 1

16 εrts Φt
p
n ∇mΦs

n
p . (4.26)

In the case at hand, however, said arbitrariness is nothing but an illusion since the

connection A is the one induced from an sp(1) connection on a quaternionic-Kähler manifold

and is therefore not to be chosen but to be deduced. At this point one can then already

appreciate the interwoven nature of the problem: Since the quaternionic structure on the

4-dimensional space is basically known, eq. (4.25) determines, part of, the spin connection

in terms of the pull-back of an sp(1) connection. This pull-back, however, is defined by

means of a harmonic map satisfying eq. (4.14), which presupposes knowing the Vierbein,

and hence also the spin connection.

A ‘trivial’ solution to the requirement that the hyperscalars form a harmonic map

satisfying eq. (4.14), is to take them to be constant: eq. (4.25) then states that Φ defines

a covariantly constant hypercomplex structure, so that the 4-dimensional manifold has

to be hyper-Kähler, and we recover the results of [1, 5]. As is well-known the holonomy

of a 4-dimensional hyper-Kähler space is su(2) ⊂ so(4), and in a suitable frame the spin

connection can be taken to be selfdual. The technical reason why the spin connection can be

taken to be selfdual lies in the fact that the Φs are anti-selfdual and that the split into anti-

and selfdual components corresponds to the Lie algebraic split so(4) ∼= su(2)+⊕su(2)−; if

we then take the Φs to be induced from the ones on R
4, called J, and denote the projection

of the spin connection onto su(2)± by ξ±, then eq. (4.25) can be expressed as [ξ−m, Jr] = 0,

which immediately implies ξ− = 0.

In the general case there will still be no constraint on ξ+, but we can solve equa-

tion (4.25) to give

ξ−m n
q = −~Am · ~Jn

q , (4.27)

where as above, we made use of the quaternionic structure induced from flat space.

In the above we were able to match things up without much ado, since the relevant

su(2)s both acted in the vector representation. When considering the Killing spinor equa-

tion, however, the representations do not add up that nicely, and one finds that a necessary

condition for having unbroken supersymmetry is that the generators of su(2) and su(2)−
should have identical actions on the Killing spinors, i.e.

εj iσr
j
i = 1

4 J
r
mnγmn εi , (4.28)

and these conditions will appear as projectors Πr +
i
j acting on the Killing spinors, where

Πr ±
i
j = 1

2

[

δ ± i
4 6J(r)σ(r)

]

i

j . (4.29)

In principle we only need to impose one such constraint for each non-trivial component A
r.

The last constraint on the bosonic fields comes from eq. (4.14). In the timelike case

this equation is purely spatial and in 4-dimensional notation reads

∂mqX = Φr
m

n ∂nqY Jr
Y

X . (4.30)
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This condition implies that q is what ref. [45] calls a quaternionic map. In said reference

it is shown that a quaternionic map between hyper-Kähler manifolds implies that the map

is harmonic, i.e. it solves

Dµ∂µ qX = 0 . (4.31)

Here, however, we are not dealing with maps between hyper-Kähler manifolds, yet the

KSIs state that q is automatically harmonic. The question then is: Apart from being

quaternionic, what properties must q satisfy in order to be harmonic?

Let us be a bit more general and consider the situation in which the sp(1) connection

A appearing in eq. (4.25) is not the pull-back of the sp(1) connection, denoted B, defined

on the hypervariety. By then differentiating eq. (4.30), using eqs. (4.25) and the formulas

in appendix (B), we obtain

Dm∂nqX = −2εstr
[

A
s
n − ∂nqZ

B
s
Z

]

Φt
m

p∂pq
Y Jr

Y
X

+Φr
n

p Dm∂pq
y ~Jr

Y
X .

(4.32)

Contracting the free indices, we find that

Dm∂mqX = 2εstr
[

A
s
m − ∂mqZ

B
s
Z

]

Φt nm∂nqY Jr
Y

X . (4.33)

In our case, we have A = dq ·B whence the fact that q is a quaternionic map, by itself,

implies that it is harmonic.

Therefore, supersymmetric configurations of the hyperscalars consist of quaternionic

maps q such that the su(2)− connection of the 4-dimensional space manifold is canceled by

the pullback of the one on the hypervariety.

In the next section we are going to check whether the conditions that we have derived

on the fields are sufficient to have unbroken supersymmetry, i.e. identically solve the KSEs.

4.1.2 Solving the Killing spinor equations

We begin with eq. (4.2), from the gaugino supersymmetry transformation. After use of the

expression of the vectorial fields eq. (4.20), it can be put in the form

(

2 6∂φx −
√

3
2 6ΘI

)

R−εi = 0 , (4.34)

where we have defined the projectors R±

R± ≡ 1
2

(

1 ± γ0
)

. (4.35)

Obviously, this equation can always be solved by imposing the projection

R−εi = 0 , (4.36)

which is equivalent to a chirality condition on the spinors over the spatial manifold

due to the relation γ0 = γ1234. R+ and R− have rank 2 and therefore this projection

breaks/preserves 1/2 of the original supersymmetries.
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Now we analyze eq. (4.3), from the hyperinos supersymmetry transformations. Using

eq. (4.30) we can rewrite it in the form

fX
jA 6∂qX

[

3δj
i + i

4

∑

r

6J(r)σ(r)
j
iγ0

]

εi − γmJ
r
mn∂nqY Jr

Y
XfX

iAR−εi = 0 , (4.37)

which can be solved by imposing the projection eq. (4.36) and

Πr+
j
iεj = 0 , (4.38)

where the Πr±
j
is are the objects defined in eq. (4.29). The Πr+

j
i satisfy the algebra

Πr +Πs + = 1
2Πr + + 1

2Πs+ − 1
2εrstΠt + − 1

4 δrsR− , (4.39)

and are idempotent (and, therefore, projectors) only in the subspace of spinors satisfying

the projection eq. (4.36).

Observe that, in principle, we need to impose the three projections r = 1, 2, 3 on the

Killing spinors. The above algebra shows that only two of them are independent and it is

easy to see that they preserve only 1/4 of the supersymmetries preserved by the projection

eq. (4.36), i.e. only 1/8 of the supersymmetries is generically preserved in presence of

non-trivial hyperscalars.

We turn now to eq. (4.1) from the gravitino supersymmetry transformation. We con-

sider separately the timelike and spacelike components of this equation. By using the spin

connection of the five-dimensional metric eqs. (C.4) and the expression of the vector fields

eq. (4.20), the timelike component takes the form

∂0ε
i +

[

2 6∂f1/2 − 1
4f

(

1 − 1
3γ0

)

6G+ − 1
4f 6G−

]

R−εi = 0 , (4.40)

which is automatically solved by time-independent Killing spinors satisfying the projection

eq. (4.36).

The space-like components of eq. (4.1) take, after use of eq. (4.36), the form

∇mηi + ηj
Am j

i = 0 , ηi ≡ f−1/2εi . (4.41)

To solve this equation, the quaternionic nature of the 4-dimensional spatial manifold

comes to our rescue: in the special Vierbein basis and SU(2) gauge in which eq. (4.27)

holds, the 2-forms Φr
mn are the constants Jr

mn. Using this splitting, the above equation

takes the form

∇+
mηi + i A

r
m

(

σr
j
i + i

4 6Jrδj
i
)

ηj = 0 , ∇+
mηi = (∂m + 1

4 6ξ+
m)ηi . (4.42)

Using the projections eq. (4.38) for each non-vanishing component of the pull-back of the

su(2) connection A
r
X∂mqX we are left with

∇+
mηi = 0 , (4.43)

which is solved by constant spinors that satisfy the projection eq. (4.36), i.e. if they are

chiral in the 4-dimensional spaces of constant time.
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It should be clear from the discussion of the gravitino variations, that, for some config-

urations, not all of the projections Π need be imposed, e.g. when turning on only an u(1)

in su(2)−. The analysis of eq. (4.37), however, indicates that still all 3 of the projections

ought to be implemented. This is true if we disregard the possibility of a special coordinate

dependency of the quaternionic map. As an extreme example we have the case with frozen

hyperscalars which effectively is like not having them at all. A less-trivial example to this

effect is fostered by the trivial uplift of the c-mapped cosmic string analyzed in [11, Sec.

(4.4)], in which case the map is holomorphic.6

4.1.3 Supersymmetric solutions

In section 3 we proved that timelike supersymmetric configurations solve all the equations

of motions if they solve the Maxwell equations and Bianchi identities which we rewrite here

in differential form language for convenience:

4?EI = −d?
(

aIJF J
)

+ 1√
3
CIJKF J ∧ FK , (4.44)

BI = dF I . (4.45)

We may evaluate these expressions for supersymmetric configurations using the for-

mula (4.20). The result is

E0
I = −

√
3

2
f2

[

∇2
(4) (hI/f) − 1

4CIJKΘJ · ΘK
]

, (4.46)

Em
I = −2

√
3f3/2CIJKhJ(?(4)dΘK)m , (4.47)

(

?BI
)

0m = −
√

3f3/2(?(4)dΘI)m . (4.48)

where, as usual, all the objects in the r.h.s. of the equations are written in terms of the

4-dimensional spatial metric h. The components
(

?(4)BI
)mn

vanish identically, and it is

immediate to see that the KSI eq. (3.15) is satisfied.

Then, the supersymmetric solutions have to satisfy only these two equations:

∇2
(4) (hI/f) − 1

4CIJKΘJ · ΘK = 0 , (4.49)

dΘI = 0 , (4.50)

which are identical to those found in ref. [5] in absence of hypermultiplets, the difference

being the quaternionic nature of the 4-dimensional space.

4.2 Some explicit examples

In the recent paper ref. [15] Jong, Kaya and Sezgin gave an explicit example with non-

trivial and not-obviously-holomorphic hyperscalars taking values in the symmetric space

H4 = SO(4, 1)/SO(4). In this section we are going to use the same set-up to find 5-

dimensional supersymmetric solutions and discuss the possible gravitational effects.

6In fact, part of Chen and Li’s article [45] consists of showing that there are quaternionic maps between

hyper-Kähler manifolds that are not holomorphic w.r.t. some complex structure.
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The four coordinates of the target are denoted by qX , X = 1, . . . , 4, and take the

metric on the hypervariety to be

gX Y = Λ2δXY , Λ(q2) =
1

1 − q2
, q2 ≡ qXqX ≤ 1 . (4.51)

As one might have suspected this metric is Einstein, and since the space is conformally

flat, it is also trivially selfdual, meaning that we are really dealing with an authentic 4-

dimensional quaternionic-Kähler manifold.

EX = ΛδX
Y dqY , EX = Λ−1δX

Y ∂

∂qY
. (4.52)

In both the coordinate and the Vierbein basis the three complex structures are given

by the ’t Hooft symbols ρr
XY (= J

r
XY ), which are real, constant and antisymmetric matrices

in the X,Y indices. Moreover they are anti-selfdual7 and satisfy

ρr
XY ρs

Y Z = −δrs δXZ + εrst ρt
XZ , (4.53)

ρr
XY ρr

WZ = δXW δY Z − δXZ δY W − εXY WZ . (4.54)

The anti-selfdual part of the spin connection is

ω−XY = 2
(

q[XEY ] − 1
2εXY WZqW EZ

)

, (4.55)

where qX ≡ δX
Y qY .

In order to construct the hyperscalars, we assume that also the base manifold is con-

formally flat, i.e.

hmndxmdxn = Ω2dxmdxm , Ω = Ω(x2) , x2 ≡ xmxm , (4.56)

and thence take the Vierbein on the base manifold to be

V m = Ωδm
mdxm , Vm = Ω−1δm

m∂m . (4.57)

In this basis we can identify the complex structures of the base manifold with those of the

hypervariety

J
r
m

n = δm
XJr

X
Y δn

Y = ρr
mn . (4.58)

The anti-selfdual part of the spin connection on the base manifold is

ξ−mn = 2
Ω′

Ω2

(

x[mV n] − 1
2εmnpqxpV q

)

(4.59)

where xm = δm
m xn.

Now we analyze the conditions for supersymmetry on the hyperscalars qX . The first

condition is that they must constitute a quaternionic map, i.e. eq. (4.30), w.r.t. the chosen

quaternionic structures. In our setting this equations takes the form

∂mqX =
(

δmY δnX − δmXδnY − εmnY X

)

∂nqY (4.60)

7They can be seen as the three anti-selfdual combinations of generators of so(4), i.e. the generators of

the su(2)
−

subalgebra.
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whose symmetric and antisymmetric parts give

∂mqm = 0 , (4.61)

∂[mqn] = −1
2εmnpq∂pqq , (4.62)

where qm = qm.

A solution to these equations is

qm = xm x−4 , (4.63)

where we have chosen a possible multiplicative constant to be unity.

The second condition on the hyperscalars states that the anti-selfdual part of the spin

connection of the base manifold must be related to the su(2) connection induced from the

target,

ξ−mn
p = −~Am ·~Jn

p , (4.64)

~Am ≡ ∂mqX ~ωX , (4.65)

where ~ωX is the su(2) connection of the target. We observe that the reasoning leading

to the relation (4.64) can be applied on the target manifold as well,8 where the involved

connections are ωXY and ~ωX and therefore we may establish the following relation on the

target

ω−
XY

Z = −~ωX · ~JY
Z . (4.66)

By contrasting eqs. (4.64)–(4.66) we conclude that in our settings the anti-selfdual part of

the spin connection of the base manifold is induced from the one of the hypervariety,

ξ−m
np = ∂mqXω−

X
Y ZδY Z

np . (4.67)

This condition is satisfied if
Ω′

Ω
=

1

x2 (x6 − 1)
. (4.68)

The solution to this equation is

Ω =
(

1 − x−6
)1/3

, (4.69)

where, as above, we chose a certain multiplicative integration constant. We would like to

point out that in this case the whole spin connection on the base manifold, rather than

only its anti-selfdual part, is induced by the connection on the hypervariety.

A small investigation of the curvature invariants for the metric on the base space,

shows that the point x2 = 1 corresponds to a naked curvature singularity.

We have, thus, found the following 1/8 BPS, static, asymptotically flat, spherically

symmetric, solution with only unfrozen hyperscalars in the SO(1, 4)/SO(4) coset:

ds2 = dt2 −
(

1 − 1

x6

)2/3

dxmdxm ,

qm =
xm

x4
,

(4.70)

8Indeed it can be applied in any four-dimensional Riemannian manifold.
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which, as was said above, presents a naked singularity at x2 = 1. Since there are no

conserved charges in this system, the no hair conjecture suggests that black-hole type

(i.e. spherically symmetric) solutions of this and similar systems will always be singular,

but a more detailed study is needed to reach a final conclusion since they may be excluded

by a mechanism like the one discussed in ref. [46, 47]. Furthermore, a higher-dimensional

stringy interpretation of this, and similar solutions, is also needed as to interpret this

singularity correctly.

As a further example let us now consider how solutions of minimal N = 1, d = 5

SUGRA9 are deformed by the coupling to these hyperscalars. For the sake of simplicity

we consider the simplest static (Θ = ω = 0) solution which is determined, according to

eq. (4.49), by a single function f−1 = K which is harmonic w.r.t. the metric on the base

manifold. The supersymmetric solution can be written as

ds2 = K−2 dt2 − K

(

1 +
λ

x6

)2/3

dxmdxm ,

A = −
√

3 K−1 dt ,

qm =
xm

x4
.

(4.71)

If the harmonic function is chosen as to have an asymptotically flat, spherically sym-

metric solution with positive mass, the harmonic function is, with frozen hyperscalars,

K = 1 +
|Q|
x2

, (4.72)

and the solution is the 5-dimensional Reissner-Nordström black hole [48] which has an

event horizon at x = 0 that covers all singularities.

When the hyperscalars are unfrozen and we have the above base manifold, K, deter-

mined again by imposing asymptotic flatness and spherical symmetry, is given by

K = 1 + Q
2F1

(

1
3 , 2

3 ; 4
3 ; x−6

)

x2
, (4.73)

where 2F1 is a Gauß hypergeometric function. It is easy to see that limx2→∞ K = 1

and that 2F1

(

1
3 , 2

3 ; 4
3 ; x−6

)

/x2 is a real, strictly positive and monotonically decreasing

function on the interval x2 ∈ (1,∞). The real question then is: what happens at x2 = 1?

Eq. [49, 15.1.20] gives a straightforward answer

2F1

(

1
3 , 2

3 ; 4
3 ; 1

)

=
Γ

(

1
3

)

Γ
(

4
3

)

Γ
(

2
3

) ∼ 1.76664 , (4.74)

which implies that there is a naked singularity at x2 = 1.

4.2.1 Solutions with an additional isometry

To make contact with the families of solutions with one additional isometry found in

refs. [1, 4] we make the following Ansatz for the 4-dimensional spacelike metric

hmndxmdxn = H−1(dz + χ)2 + Hγrsdxrdxs , r, s = 1, 2, 3 , (4.75)

9In our notation this means that nv = 0, C111 = 1 and h1 = 1.
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where the function H, the 3-dimensional metric γrs, and the 1-form χ = χrdxr are all

independent of the coordinate z. This Ansatz covers all 4-dimensional metrics with one

isometry. We also require all fields in the solution to be independent of z.

As we have seen, supersymmetry requires the anti-selfdual part of the spin connection

of this metric to be identical to the pullback of the su(2) connection of the hypervariety.

With the orientation εz123 = +1 and the Vierbein basis

V z = H−1/2(dz + χ) , V r = H1/2vr , (4.76)

where the vr is the Dreibein for the 3-dimensional metric γrs, the anti-selfdual part of the

spin connection 1-form is given by

ξ− zr = 1
2H−3/2[∂rH − (?̂d̂χ)r]V

z

+1
4εrstH

−3/2{[∂tH − (?̂d̂χ)t]δsu − 2H$ust}V u ,
(4.77)

where hatted objects refer to the 3-dimensional metric.

Observe that the z-independence of all fields means that the pullback of the su(2)

connection has no z component. Then, the supersymmetry condition eq. (4.27) leads to

d̂H = ?̂d̂χ , ⇒ ∇̂2H = 0 , (4.78)

which is a condition on the 4-dimensional metric, and

ξ− zs
r = −1

2εstu $r
tu = −2As

X ∂rq
X , (4.79)

which is a condition on the hyperscalars and the 3-dimensional metric.

Observe that the above 4-dimensional metric is a generalization of the Gibbons-

Hawking instanton metric [35]. The non-trivial 3-dimensional metric destroys the self-

duality of the connection. However, the generalized metric admits a quaternionic structure

which is the straightforward generalization of that of the Gibbons-Hawking metric [36] and

is, therefore, associated to the three hyper-Kähler 2-forms

Jr ≡ V z ∧ V r − 1
2εrstV s ∧ V t . (4.80)

It is trivial to check that they satisfy the quaternionic algebra since the tangent space

components of these 2-forms are identical to those of the Gibbons-Hawking metric and are

proportional to the anti-selfdual generators of SO(4). Unlike the Gibbons-Hawking case,

however, the hyper-Kähler 2-forms are not closed. Instead, a simple calculation shows that

they satisfy

dJr − $rs ∧ Js = 0 , (4.81)

which, on account of eq. (4.79), can be written in the form

dJr + 2εrst
A

s ∧ Js = 0 . (4.82)

Thus, the 4-dimensional metric eq. (4.75) and hyperscalars subject to eqs. (4.78)

and (4.79) (plus eq. (4.30)) are the most general ones associated to supersymmetric so-

lutions with one isometry. Using them it can be shown that the general solutions found
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in ref. [4] are formally identical, the only difference being that the 2n̄ + 2 harmonic func-

tions KI , LI ,M,H on which these solutions depend, are harmonic functions w.r.t. the

3-dimensional metric γrs.

To be explicit, in terms of these harmonic functions, the scalars, the closed selfdual

2-forms ΘI , and the 1-form ω take the form

hI/f = CIJKKJKK/H + LI ,

ΘI = [(dz + χ) ∧ d(KI/H) + H?̂d(KI/H)] ,

ω ≡ ω5(dψ + χ) + ω̂ ,

ω5 = M + 3
2H−1LIK

I + H−2CIJKKIKJKK ,

?(3)dω̂ = HdM − MdH + 3
2(KIdLI − LIdKI) .

(4.83)

The function f has to be determined case by case using the constraint CIJKhIhJhK = 1,

but an explicit expression for symmetric spaces is given in ref. [4]. In the n = 0 case, i.e.

only one function K0 ≡ K and one function L0 ≡ L, it is given by

f−1 = K2/H + L . (4.84)

The metric of these solutions can be cast in the form

ds2 = −k2[dz + B]2

+k−1

[

(

fH−1

(f−1H−1−f2ω2

5
)1/2

)

(dt + ω̂)2 −
(

fH−1

(f−1H−1−f2ω2

5
)1/2

)−1
γrsdxrdxs

]

,

k2 = f−1H−1 − f2ω2
5 ,

B = χ + f2ω5k
−2(dt + ω̂) .

(4.85)

In this form, comparing with the results of refs. [10, 11] it is easy to see the form of the

N = 2, d = 4 supersymmetric solution that will appear after dimensional reduction. The

metric

ds2 =

(

fH−1

(f−1H−1 − f2ω2
5)

1/2

)

(dt + ω̂)2 −
(

fH−1

(f−1H−1 − f2ω2
5)

1/2

)−1

γrsdxrdxs , (4.86)

is that of a solution in the timelike class, to which all N = 2, d = 4 supersymmetric black

holes belong, and there is an additional scalar (k) and an additional vector field (B). If

the 5-dimensional solution is static ω5 = 0 and the vector field B = χ is magnetic and

corresponds to a KK monopole or a generalization thereof. This fact has been used in

refs. [21 – 27] to relate 4- and 5-dimensional black hole solutions.

4.3 The null case

Denote the null Killing vector by lµ. Following the same considerations as in refs. [1, 6],

we find that we can choose null coordinates u and v such that

lµdxµ = fdu , lµ∂µ = ∂v , (4.87)

where f may depend on u but not on v, and the metric can be put in the form

ds2 = 2fdu(dv + Hdu + ω) − f−2γrsdxrdxs , (4.88)
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where r, s, t = 1, 2, 3 and the 3-dimensional spatial metric γrs may also depend on u but

not on v. eqs. (4.9) and (4.11) state that the scalars are v-independent.

The above metric is completely equivalent to the one used in refs. [1, 6], but we find this

form more convenient; a Vielbein, and the corresponding spin connection and curvature

for it are given in appendix D.

In the null case the Fierz identities (A.23), (A.24) and (A.25) imply that the 2-forms

bilinears Φr are of the form

Φr = du ∧ vr , (4.89)

where the 1-forms vr are an orthogonal basis for the 3-dimensional spatial metric γrs.

Eq. (4.16) then implies the equation

du ∧ Dvr = 0 , (4.90)

i.e. the spatial components of the pullback of the su(2) connection are related to the spin

connection coefficients of the basis vr (computed for constant u) by

$r
st = 2εstp

A
p
X ∂rq

X . (4.91)

This equation is identical to the one found in ref. [11] in the context of ungauged N =

2, d = 4 supergravity coupled to hypermultiplets. Actually, substituting the 2-forms we

found into eq. (4.14) we arrive at

∂rq
XfX

iAσr
i
j = 0 , (4.92)

which is identical to the equation that the hyperscalars have to satisfy in a supersymmetric

configuration of ungauged N = 2, d = 4 supergravity [11]. Observe that the last two

equations together with eq. (B.11) (for ν = −1) imply that the Ricci scalar of the 3-

dimensional metric γ satisfies

Rrs(γ) = −1
2gXY ∂rq

X∂sq
Y . (4.93)

Let us now determine the vector field strengths: eqs. (4.4), (4.10) and (4.12) lead to

lµF I
µν = 0 , (4.94)

and, using the basis given in appendix D, we can write

F I = F I
+re

+ ∧ er + 1
2F I

rse
r ∧ es = F I

+rdu ∧ vr + 1
2f−2F I

rsv
r ∧ vs . (4.95)

From eq. (4.6) we get10

hIF
I
rs = −

√
3εrst∂tf , ∂t ≡ vt

s∂s . (4.96)

The same result can be obtained from D ? Φr. From eq. (4.13) we get

hx
I F I

rs = −εrstf ∂tφ
x , (4.97)

10Unless stated otherwise (as is the case of F I
rs) all quantities with flat spatial indices refer to the

3-dimensional metric and Dreibein basis.
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which, together with the previous equation and the definition of hx
I give

f−2 F I
rs =

√
3[?̂ d̂(hI/f) ]rs . (4.98)

From the + + r components of eq. (4.7) we get

hIF
I
+r = − 1√

3
f2(?̂F )r , (4.99)

where

F = d̂ω . (4.100)

The components hx
I F I

+r are not determined by supersymmetry and we parametrize

them by 1-forms ψI satisfying hIψ
I = 0. In conclusion, the vector field strengths are given

by

F I = [ 1√
3
f2hI ?̂F − ψI ] ∧ du +

√
3?̂d̂(hI/f) . (4.101)

4.3.1 Solving the Killing spinor equations

Let us continue our analysis by plugging our configuration into eq. (4.2): using the Vielbein,

eq. (4.97) and some Clifford algebra manipulations, we see that

0 = f−1
[

∂uφx + hx
I ψI

r γr + f2

2 ∂tφ
x εtrsγ

rsγ−
]

γ+εi , (4.102)

so, if we want the scalars φ and the ψI to be non-trivial, we are forced to impose γ+εi = 0.

As is usual in wave-like supersymmetric solutions, the − component of the susy vari-

ation (4.1) is identically satisfied by an v-independent spinor, and the remainder of the

components simplify greatly due to the lightlike constraint: The ones in the r-directions

reduce, after using eqs. (4.96), (4.99), to

0 = f Drε = f
[

∂r − 1
4$rstγ

st + i~A · ~σT
]

ε

= f
[

∂r + A
p
rγp

(

1 − iγp(σ(p))T
) ]

ε ,
(4.103)

where in the last step we made use of eq. (4.91). If we then introduce the projection

operators (no sum over p!)

Πp = 1
2

(

1 − iγp(σ(p))T
)

; Π2
p = Πp ; [ Πp , Πq ] = 0 , (4.104)

the above equation is solved by imposing the condition Πpε = 0, for every p for which A
p

does not vanish, leading to a Killing spinor that can only depend on u.

The penultimate equation that needs to be checked is the gravitino variation in the

u-direction.

0 = ∂uε + 1
4vr

t∂uvst γrsε + i~Au · ~σT ε = ∂uε −
[

A
p
u + 1

4εprsvr
t∂uvst

]

γpε . (4.105)

Generically the factor vr
t∂uvst is spacetime dependent, which, in order to avoid an

inconsistency with the x-independency of the Killing spinor, means that we must have

A
p
u = −1

4εprs vr
t ∂uvst . (4.106)
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A consequence of this analysis is that the Killing spinor is constant.

Eq. (4.3) is the only one left to be analyzed. In fact it is straightforward to see that,

given the constraints obtained thus far, eq. (4.3) is tantamount to (4.92) contracted with

εj . In order to get this far, however, one has to make use of all the constraints, meaning

that if we do not want even more constraints, eq. (4.92) must hold.

4.3.2 Equations of motion

In the null case, the KSIs contain far less restrictive information than in the timelike case,

and as one can see from eqs. (3.18)–(3.22), there are more equations of motion to be

checked.

In order to get on with the show, let us analyze the gauge sector: the non-vanishing

components of the Bianchi identities are immediately found to be

?BI +− =
√

3f3∇̂2(hI/f) , (4.107)

f−1?BI −r = [?̂d̂( 1√
3
f2hI ?̂F − ψI)]r +

√
3
[

?̂∂u?̂d̂(hI/f)
]

r
, (4.108)

and the Maxwell equations take the form

4?EI = −
√

3du ∧
{

f d̂hI ∧ F + 1√
3

[

d̂(?̂ψI/f) − 2CIJKψJ ∧ ?̂d̂(hK/f)
]}

, (4.109)

and satisfy the KSIs eqs. (3.19) and (3.20). Eq. (4.107) is solved by n̄ ≡ nv + 1 harmonic11

functions KI :

hI/f = KI , ∇̂2 KI = 0 , (4.110)

KI 6= 0, which, as in the timelike case, determines f to be

f−3 = KIK
I , KI ≡ CIJKKJ KK . (4.111)

Since the KI are harmonic, we may introduce n̄ local, 3-dimensional 1-forms αI =

αI
r(u, ~x)dxr which satisfy

d̂αI = ?̂d̂KI , (4.112)

such that each αI is determined, up to a 3-dimensional gradient, in terms of KI and γ.

This gauge freedom will be relevant soon.

Eqs. (4.108) become

d̂ψI = 1√
3
d̂

(

f2hI ?̂F
)

+
√

3d̂α̇I , (4.113)

where α̇ ≡ α̇I
r dxr. The general, local solution to this equation is

ψI = 1√
3
f2hI ?̂F + d̂M I +

√
3α̇I , (4.114)

where the M Is are some functions. The constraint h · ψ = 0 implies

1√
3
f2?̂F + hI d̂M I +

√
3hI α̇

I = 0 . (4.115)

11In this section, harmonic means harmonic on the 3-dimensional Euclidean space with metric γ.
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Due to the relation F = d̂ω, the above is the equation that, if we manage to fix the Ms,

will determine ω.

Plugging eq. (4.114) into the Maxwell equations we see that

∇̂2LI +
√

3CIJK

[

∇̂r

(

KJ α̇K
)

r
+ ∂rK

J
(

α̇K
)

r

]

= 0 , (4.116)

where we have defined the combinations

LI ≡ CIJK KJ MK . (4.117)

At this point we take advantage of the gauge freedom of (4.112) in order to simplify

the Maxwell equations: fix the gauge by imposing

CIJK

[

∇̂r

(

KJ α̇K
)

r
+ ∂rK

J
(

α̇K
)

r

]

= 0 , (4.118)

thus determining αI completely in terms of the KI and γ. In this gauge the functions LI

are harmonic,

∇̂2 LI = 0 , (4.119)

and we determine the functions M I in terms of the harmonic functions KI and LI by

eq. (4.117).

Another advantage of the above gauge is that the equation for ω, eq. (4.115), takes on

the rather nice form:

?̂d̂ω =
√

3
(

LIdKI − KIdLI

)

− 3KI α̇
I . (4.120)

In the analysis of the Einstein equations it is useful to perform the following change

of variables

H = −1
2LIM

I + N . (4.121)

With this redefinition E++ becomes

E++ = −f∇2N + f
[

∇r(ω̇)r + 3(ω̇)r∂r log f + 1
2f−3(γ̈)rr + 1

4f−3(γ̇)2 − 3
2f−4ḟ(γ̇)rr

−3CIJKKI
(

K̇JK̇K + (α̇J )r(α̇
K)r + 2√

3
(α̇J)r∂rM

K
)

+ 12f3
(

KIK̇
I
)2

+1
2f−3gXY q̇X q̇Y

]

. (4.122)

In general there is a gauge freedom in setting the one-form ω given in (4.120), corre-

sponding to shifts in the coordinate v. If we choose to fix this gauge freedom by demanding

∇r(ω̇)r + 3(ω̇)r∂r log f = −1
2f−3(γ̈)rr − 1

4f−3(γ̇)2 + 3
2f−4ḟ(γ̇)rr − 1

2f−3gXY q̇X q̇Y

+3CIJKKI
(

K̇JK̇K + (α̇J)r(α̇
K)r + 2√

3
(α̇J )r∂rM

K
)

−12f3
(

KIK̇
I
)2

, (4.123)

then E++ vanishes identically if N is a real, harmonic function. E+r becomes

E+r = −1
2∇s(γ̇)rs + 1

2∂r(γ̇)ss + 3
2f3K̇I∂rK

I + 1
2gXY q̇X∂rq

Y , (4.124)

whereas Ers is identically satisfied by the configuration as we have it.
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4.3.3 u-independent solutions

The equations that need to be solved, simplify greatly if we consider the case that the solu-

tions do not depend on the coordinate u: in that case the gauge-fixings Eqs. (4.118), (4.123)

and the remaining equation of motion, eq. (4.124), vanish identically, meaning that now

the solutions are completely determined by the hyperscalars, the 3-dimensional metric and

the 2n̄ + 1 real, harmonic functions LI , KI and N . Given these ingredients, in order to

fully specify the solution we need calculate f , H, ω and ψI through the following, simplified

equations.

f−3 = KI KI , LI = CIJKKJ MK ,

H = −1
2LI M I + N , ?̂d̂ω =

√
3

[

LI d̂KI − KI d̂LI

]

,

hI(φ) = f KI , ψI = f3KI(LJ d̂KJ − KJ d̂LJ) + d̂M I .

(4.125)

Solutions that belong to this family, but depending on a smaller number of harmonic

functions have been given e.g. in refs. [7, 50, 51].

Apart from being one of the nicest subclasses of solutions, the u-independent one

becomes doubleplus interesting when we observe that if we reduce a solution in the null

class over the spacelike direction
√

2y = u − v, which implies u-independence, we end up

with a solution in the timelike class of N = 2 d = 4 SUGRA. In fact, comparing the

constraints in this section with the ones in [11, Sec. (5)], one finds the same constraints on

the hyperscalars and the 3-dimensional metric.

The metric eq. (4.88) can be put in an y-adapted system, and one finds

ds2 = −k2[dy + A]2 + k−1

[

(

f3

1−H

)1/2
(dt + 1√

2
ω)2 −

(

f3

1−H

)−1/2
γrsdxrdxs

]

,

k2 = (1 − H)f ,

A = −(1 − H)−1(Hdt + 1√
2
ω) .

(4.126)

The 4-dimensional solutions can be easily read from these. Apart from the scalar k and

the vector field A, which is purely electric if the 5-dimensional solution is static (ω = 0),

the metric takes the form

ds2 =

(

f3

1 − H

)1/2

(dt + 1√
2
ω)2 −

(

f3

1 − H

)−1/2

γrsdxrdxs , (4.127)

and belongs to the N = 2, d = 4 timelike class to which all black-hole-type solutions belong

in d = 4.

This 4-dimensional solution should be compared to the one in eq. (4.85), which is

the one one obtains when imposing an extra isometry on the four dimensional spacelike

manifold in the timelike case. the main difference between them is the electric or magnetic

nature of the KK vector field. In the simplest case this solutions would give a 4-dimensional

electric KK black hole and the other one a 4-dimensional magnetic KK black hole, related

by 4-dimensional electric-magnetic duality, as we discussed in the introduction. In the

more general case, the relation between these solutions is more complicated and we hope

to say more about it in the near future.
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5. Conclusions

In this paper we have found new families of supersymmetric solutions with unfrozen hy-

permultiplets. These families are very general and the form and physical properties of each

solution depend on the details of the choices of hypervarieties, harmonic mappings and

harmonic functions made. This opens a new wide range of possibilites that needs to be ex-

plored. More work is need to find out what happens with black hole attractors12 and black

hole entropy when hyperscalars are unfrozen [47], to find and explain the generic features

of these solutions (are they always singular?), to find out to which stringy configurations

these solutions correspond to etc.

One of the families of solutions describes generically strings with pp-waves propagating

along it and can be dimensionally reduced to supersymmetric N = 2, d = 4 black holes.

This raises new question about how the 4-dimensional attractor mechanism is implemented

in the 5-dimensional setting, taking into account that these 5-dimensional solutions belong

to the null class and the standard attractor mechanism is proven only for solutions in the

timelike class. The 5-dimensional origin of the 4-dimensional entropy can (and must) be

investigated.

We hope to report on some of these issues in the near future.
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A. Conventions

Our conventions can be obtained from those of ref. [37] by changing the sign of the metric

(to have mostly minus signature), multiplying all γas by +i and all γas by −i and setting

κ = 1/
√

2, but we collect here the main features of our conventions to use them as a

reference. In particular, section A.3 contains the relevant Real Special Geometry identities

for κ = 1/
√

2 (those in appendix C of ref. [37] are only valid for κ = 1).

A.1 Gamma matrices and spinors

We use mostly minus signature.

12For a recent, pedagogical, review, see ref. [52].
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The first four of our 5-dimensional gamma matrices are taken to be identical to 4-

dimensional purely imaginary gamma matrices γ0, γ1, γ2, γ3 satisfying

{γa, γb} = 2ηab , (A.1)

and the fifth is γ4 = −γ0123, so it is purely real, the above anticommutator is valid for

a = 0, · · · , 4 and, furthermore, γa1···a5 = +εa1···a5 and, in general

γa1···an =
(−1)[n/2]

(5 − n)!
εa1···anb1···bn−5γb1···bn−5

. (A.2)

On the other hand, γ0 is Hermitean and the other gammas are anti-Hermitean.

To explain our convention for symplectic-Majorana spinors, let us start by defining the

Dirac, complex and charge conjugation matrices D±,B±, C±. By definition, they satisfy

D± γa D−1
± = ±γa † , B± γa B−1

± = ±γa ∗ . C± γa C−1
± = ±γa T . (A.3)

The natural choice for Dirac conjugation matrix is

D = iγ0 , (A.4)

which corresponds to D = D+. The other conjugation matrices are related to it by

C± = BT
±D , (A.5)

but it can be shown that in this case only C = C+ and B = B+ exist and are both

antisymmetric. We take them to be

C = iγ04 , B = γ4 ⇒ B∗B = −1 . (A.6)

The Dirac conjugate is defined by

ψ†D = iψ†γ0 , (A.7)

and the Majorana conjugate by

ψT C = iψT γ04 . (A.8)

The Majorana condition (Dirac conjugate = Majorana conjugate) cannot be consistently

imposed because it requires B∗B = +1. Therefore, we introduce the symplectic-Majorana

conjugate in pairs of spinors by using the corresponding symplectic matrix, e.g.

ψi c ≡ εijψ
j TC , (A.9)

then the symplectic-Majorana condition is

ψi ∗ = εijγ
4ψj . (A.10)

To impose the symplectic-Majorana condition on hyperinos ζA the only thing we have

to do is to replace the matrix εij by CAB , which is the invariant metric of Sp(nh).
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Our conventions on SU(2) indices are intended to keep manifest the SU(2) covariance.

In SU(2), besides the preserved metric, there is the preserved tensor εij. We also introduce

εij , ε12 = ε12 = +1. Therefore we may construct new covariant objects by using εij and εij ,

for instance ψi ≡ εijψ
j (whence ψj = ψiε

ij). With this notation the symplectic-Majorana

condition can be simply stated as

ψi ∗ = γ4ψi . (A.11)

We use the bar on spinors to denote the (single) Majorana conjugate:

ψ̄i ≡ ψiTC , (A.12)

which transforms under SU(2) in the same representation as ψi does. We also lower its

SU(2) index: ψ̄i ≡ εijψ̄
j . In terms of single Majorana conjugates the symplectic Majorana

condition reads
(

ψ̄i
)∗

= ψ̄iγ
4 . (A.13)

Finally, observe that after imposing the symplectic Majorana condition the following simple

relation between the single Dirac and Majorana conjugates holds:

ψi†D = ψ̄i , (A.14)

which is very useful if one prefers to use the Dirac conjugate instead of the Majorana one.

The bilinears that can be constructed from Killing spinors will in general be 2 × 2

matrices that can be written as linear combinations of the Pauli matrices σr̂ (r̂ = 0, . . . , 3)

where σ0 = I2×2. Therefore, we are bound to need the Fierz identities

(

λ̄Mϕ
) (

ψ̄Nχ
)

= p
8

{(

λ̄Mσr̂Nχ
) (

ψ̄σr̂ϕ
)

+
(

λ̄Mγaσr̂Nχ
) (

ψ̄γaσ
r̂ϕ

)

−1
2

(

λ̄Mγabσr̂Nχ
) (

ψ̄γabσ
r̂ϕ

)}

,
(A.15)

where the SU(2) indices are implicit and p = (−)1 for (anti-)commuting spinors.

A.2 Spinor bilinears

With one commuting symplectic-Majorana spinor εi we can construct the following inde-

pendent, SU(2)-covariant bilinears:

ε̄i εj : It is easy to see that

ε̄iε
j = −εjk(ε̄kε

l)εli ,

(ε̄iε
j)∗ = −ε̄jε

i ,
(A.16)

The first equation implies that this matrix is proportional to δi
j and the second

equation implies that the constant is purely imaginary. Thus, we define the SU(2)-

invariant scalar

f ≡ iε̄iε
i = iε̄σ0ε , ε̄iε

j = − i
2 f δi

j . (A.17)

All the other scalar bilinears iε̄σrε (r = 1, 2, 3) vanish identically.
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ε̄iγ
aεj : This matrix satisfies the same properties as ε̄iε

j , and so we define the vector bilinear

V a ≡ iε̄iγ
aεi = iε̄γaσ0ε , ε̄iγ

aεj = − i
2 δi

j V a . (A.18)

which is also SU(2)-invariant, the other vector bilinears being automatically zero.

ε̄iγ
abεj : In this case

ε̄iγ
abεj = +εjk(ε̄kγ

abεl)εli ,

(ε̄iγ
abεj)∗ = ε̄jγ

abεi ,
(A.19)

which means that these 2-form matrices are traceless and Hermitean and we have

three non-vanishing real 2-forms

Φr ab ≡ σr
i
j ε̄jγ

abεi , ε̄iγ
abεj = 1

2σr
i
j Φr ab . (A.20)

r = 1, 2, 3, which transform as a vector in the adjoint representation of SU(2), and

the fourth ε̄γabσ0ε = 0.

Using the Fierz identities eq. (A.15) for commuting spinors we get, among other iden-

tities,

V aVa = f2 , (A.21)

VaVb = ηabf
2 + 1

3Φr
a
cΦr

cb , (A.22)

V aΦr
ab = 0 , (A.23)

V a(?Φr)abc = −fΦr
bc , (A.24)

Φr
a
cΦs

cb = −δrs(ηabf
2 − VaVb) − εrstfΦt

ab , (A.25)

Φr
[abΦ

s
cd] = −1

4fδrsεabcdeV
e , (A.26)

Vaγ
aεi = fεi , (A.27)

Φr
abγ

abεi = 4ifεjσr
j
i . (A.28)

A.3 Real Special Geometry

The geometry of the n physical scalars φx (x = 1, . . . , n) of the vector multiplets is fully

determined by a constant real symmetric tensor CIJK (I, J,K = 0, 1, . . . , n̄ ≡ n + 1). The

scalars appear through n̄ functions hI(φ) constrained to satisfy

CIJKhIhJhK = 1 . (A.29)

One defines

hI ≡ CIJKhJhK , ⇒ hIh
I = 1 , (A.30)

and a metric aIJ that can be use to raise and lower the SO(n̄) index

hI ≡ aIJhJ , hI ≡ aIJhJ . (A.31)

The definition of hI allows us to find

aIJ = −2CIJKhK + 3hIhJ . (A.32)
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Next, one defines

hI
x ≡ −

√
3hI

,x ≡ −
√

3
∂hI

∂φx
, (A.33)

and

hIx ≡ aIJhJ
x = +

√
3hI,x , (A.34)

which satisfy

hIh
I
x = 0 , hIhIx = 0 , (A.35)

due to eq. (A.29). The hI enjoy the following properties of closure and orthogonality

(

hI

hI
x

)

(

hI hy
I

)

=

(

1 0

0 δy
x

)

,
(

hI hx
I

)

(

hJ

hJ
x

)

= δJ
I . (A.36)

Therefore any object with SO(n̄) index can be decomposed as

AI =
(

hJAJ
)

hI +
(

hx
JAJ

)

hI
x . (A.37)

The metric of the scalars gxy(φ) is the pullback of aIJ :

gxy = aIJhI
xhJ

y = −2CIJKhI
xhJ

y hK , (A.38)

and can be used to raise and lower x, y indices. Other useful expressions are

aIJ = hIhJ + hx
I hJx , (A.39)

CIJKhK = hIhJ − 1
2hx

I hJx , (A.40)

and

hIhJ = 1
3aIJ + 2

3CIJKhK , (A.41)

hx
I hJx = 2

3aIJ − 2
3CIJKhK . (A.42)

We now introduce the Levi-Cività covariant derivative associated to the scalar metric

gxy

hIx;y ≡ hIx,y − Γxy
zhIz . (A.43)

It can be shown that

hIx;y = 1√
3
(hIgxy + Txyzh

z
I) , (A.44)

hI
x;y = − 1√

3
(hIgxy + Txyzh

Iz) , (A.45)

Txyz =
√

3hIx;yh
I
z = −

√
3hIxhI

y;z , (A.46)

Γxy
z = hIzhIx,y − 1√

3
Txy

w = 8hz
Ih

I
x,y + 1√

3
Txy

w . (A.47)
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B. Quaternionic-Kähler manifolds

In this appendix we review the definition and basics of quaternionic-Kähler manifolds. We

refer the reader to ref. [53] for a more comprehensive introduction to quaternionic manifolds

with original references.

A quaternionic-Kähler manifold is a real 4n-dimensional manifold (n > 1) such that13

1. There exists on it a triplet of complex structures Jr
X

Y , r = 1, 2, 3, X,Y = 1, . . . 4n

which satisfy the algebra of imaginary unit quaternions,

JrJs = −δrs + εrst J t , (B.1)

which is known as hypercomplex or quaternionic structure. A manifold with this

property is an almost hypercomplex of almost quaternionic manifold.

2. The hypercomplex structure is integrable, i.e. it is covariantly constant with respect

to the standard Levi-Cività connection and a non-trivial su(2) connection (i.e. with

non-vanishing curvature):

∂XJr
Y

Z − ΓXY
UJr

U
Z + ΓXU

ZJr
Y

U + 2εrstωX
sJ t

Y
Z = 0 , (B.2)

where ωX
r is the su(2) connection. In this case the manifold is a quaternionic man-

ifold. (If this equation is satisfied with a trivial su(2) connection the manifold is a

hypercomplex manifold.)

3. There is a metric which is invariant under the action of the three complex structures

gXY = J (r)
X

ZJ (r)
Y

UgZU , (no sum over r!) . (B.3)

This property makes it a (quaternionic) Kähler manifold.

The combination of the complex structures with the metric gives us the three hyper-Kähler

2-forms

Jr
XY = gXZJr

Y
Z . (B.4)

They are covariantly closed respect to the su(2) connection,

dJr + 2εrstωs ∧ J t = 0 . (B.5)

The holonomy of a quaternionic-Kähler manifold is contained in SU(2) ·Sp(2) and the

tangent space indices are split accordingly into pairs of SU(2) and Sp(n) indices i, j, k = 1, 2

and A,B,C = 1, . . . , 2n respectively. The Vielbein is defined to be fiA
X and is related to

the metric by

gXY = fX
iA fY

jB
CAB εij , (B.6)

13Clearly, the definitions given below are just too weak to be useful when n = 1, and one defines

a 4-dimensional manifold to be quaternionic-Kähler, iff it is Einstein and selfdual. For a supergravity

justification of this definition see e.g. [53].
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where

fX
iA fiA

Y = δX
Y , fiA

X fX
jB = δi

j δA
B , (B.7)

and CAB is the Sp(n)-invariant metric. The Vielbein also satisfies the reality condition

(

fX
iA

)∗
= εij CAB fX

jB , (B.8)

and they are covariantly constant under the combination of the Levi-Cività, su(2)- and

sp(n) connections. The Vielbein also gives us the tangent version of the complex structures.

The constant matrices −iσr satisfy the algebra eq. (B.1), and we have

Jr
X

Y = fX
iA Jr

iA
jB fjB

Y , Jr
iA

jB ≡ −iσr
i
j δA

B . (B.9)

The spin connection can be split into its su(2) and sp(n) components as follows:

ωX iA
jB = i

2 ωX
r Jr

iA
jB + ωX A

B δi
j . (B.10)

Some useful identities are

RXY
r = 1

4ν Jr
XY , (B.11)

2f[X
iAfY ]jA = iJr

XY σr
j
i , (B.12)

2f(X
iAfY )jA = gXY δj

i . (B.13)

The constant ν is given in terms of the dimensionality of the manifold 4n and its Ricci

scalar R by

ν =
R

4n(n + 2)
. (B.14)

C. The d = 5 conformastationary metric

In the timelike case we find the conformastationary metric eq. (4.17 ) which we rewrite

here for convenience:

ds2 = f2 (dt + ω)2 − f−1hmndxmdxn , ω = ωmdxm , m, n = 1, · · · , 4 . (C.1)

We choose the Vielbein basis

(ea
µ) =







f fωm

0 f−1/2V n
m






, (eµ

a) =







f−1 −f1/2ωm

0 f1/2V n
m






, (C.2)

where

hmn = Vm
pVn

qδpq , Vm
p Vn

q hpq = δmn , ωm = Vm
nωn . (C.3)

The non-vanishing components of the spin connection in this basis are

ω00m = −2∂mf1/2 , ω0mn = ωm0n = 1
2f2 (dω)mn , ωmnp = −f1/2ξmnp − 2δm[n∂p]f

1/2 ,

(C.4)
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where, from now on, all the objects in the r.h.s. of these equations refer to the 4-dimensional

metric hmn and, in particular

(dω)mn = Vm
pVn

q (dω)pq = 2Vm
pVn

q∂[pωq] . (C.5)

Thee non-vanishing components of the Ricci tensor are

R00 = −∇2f + f−1(∂f)2 − 1
4f4(dω)2 ,

R0m = −1
2f−1/2∇n[f3(dω)nm] ,

Rmn = fRmn − 1
2(dω)mp(dω)np + 3

2f−1∂mf∂nf − 1
2δmn[∇2f − f−1(∂f)2] ,

(C.6)

and the Ricci scalar is given by

R = −fR + 1
4(dω)2 + ∇2f − 5

2f−1(∂f)2 . (C.7)

We define, following ref. [1] we define the decomposition

fdω = G+ + G− , (C.8)

so

de0 = f−1df ∧ e0 + G+ + G− . (C.9)

Further, since in this basis V̂ = fe0, we have

dV̂ = 2df ∧ e0 + f(G+ + G−) ,

?dV̂ = 2 ? (df ∧ e0) + (G+ − G−) ∧ V̂ .
(C.10)

D. The null-case metric

ds2 = 2fdu(dv + Hdu + ω) − f−2γrsdxrdxs , r, s = 1, 2, 3 . (D.1)

Orthonormal 1-form and vector basis for this metric are given by

e+ = fdu , e+ = f−1(∂u − H∂v) ,

e− = dv + Hdu + ω , e− = ∂v ,

er = f−1vr , er = f(vr − ωr∂v) ,

(D.2)

where vr = vr
sdxs and vr = vr

s∂s are orthonormal basis 1-forms and vectors for the

3-dimensional spatial positive-definite metric γrs

δrsv
r
tv

s
q = γtq , vt

rvq
sγrs = δtq . (D.3)

The non-vanishing components of the spin connection are

ω+r+ = ∂rH − ∂uωsvr
s , ωrs+ = −1

2f2Frs − f−2∂ufδrs − f−1v(r|
t∂uv|s)t ,

ω+r− = 1
2∂rf = ω−r+ = −ωr+−, ω+rs = 1

2f2Frs − f−1v[r|
t∂uv|s]t ,

ωrst = f$rst − 2δr[s∂t]f ,
(D.4)
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where all the quantities in the r.h.s. of all these equations refer to the 3-dimensional metric

and Dreibein and

Frs = vr
tvs

pFtp , Frs ≡ 2∂[rωs] . (D.5)

The non-vanishing components of the Ricci tensor are

R++ = −f∇2H − 1
4f4F 2 + f∇rω̇r + 3ω̇r∂

rf + 1
2f−2γrsγ̈rs + 1

4f−2γ̇rsγ̇rs

−3
2f−3ḟγrsγ̇rs − 3f−2

[

∂2
u log f − 2

(

∂u log f
)2

]

,

R+− = −1
2f2∇2 log f ,

R+r = −1
2∇s

(

f3Fsr

)

− 1
2vr

rγst∇sγ̇rt + 1
2vr

r∂u

(

γst∂rγst

)

+ 3
2vr

rγ̇rt∂
t log f

−3
2∂r∂u log f − 3

4γstγ̇st∂r log f + 3
2∂u log f∂r log f ,

Rrs = f2Rrs(γ) − δrsf
2∇2 log f + 3

2∂rf∂sf ,

(D.6)

and the Ricci scalar is

R = −f2R(γ) + 2f2∇2 log f − 3
2 (∂f)2 . (D.7)
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